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Abstract
plane jet, in which the jet exit vebcity and the co-flow velocity are in the same magnitude (21 in this paper). We also use the one-way

Direct numerical simultion (DNS) has been utilized to solve numerically a tw o-dimensional compressible w eak-shearing

coupling method to simulate the dispersion behaviors of solid particles in various representative sizes i.e. St=0.01, 1, 10, 100, where
St is the Stokes number. We get a vorticity field with fully varcose (symmetrical) modes and the entire precise processes of the rolling-
up of one spanw ise vortex, the pairing of two vortexes and the mixing of three vortexes The m ean longitudinal velocity (U) profile com-
pares well against the experimental results. The Reynolds stress profik looks special due to the symmetrical vorticity field. The particles
whose St= 0. 01 reproduce the vortex structures in detail, and the ones of St= 1 exhibit interesting self-organized behaviors and possess
the most non-uniform concentration field. They disperse uniformly around the single and pairing vortex kernels, while a few of them are

arranged almost in astraight line in the center region of the panng vortexes, which is caused by the contribution of the border of two vor-

texes in the pairing process. St= 10 and 100 can be treated as large particles, on which the flow field has few impacts.

Keywords:

The free shear flow is a classical flow phe-
nomenon containing transition and turbulence, and
the plane jet is a sort of free shear flow whose struc-
tures are more complicated than those of plane mixing
layers. Up to now, many studies concentrate on
round and rectangular jets, however, the plane jets,
which are also a prototypical sort of free turbulent
shear flow in a broad number of engineering applica-
tions have been somewhat ignored. To the best of
our knowledge, this paper is a rather early conducted
research on direct numerical simulation (DNS) of gas-
solid two-phase plane turbulent jets in domestic
research work of computational fluid dynamics (CFD).

In early experimental work of plane turbulent
jets, Bradbury[ " and Everitt et al.'? found that the
presence of strong co-flows will slow the progress of
the jet to a self-similar state. Everitt et al.'? studied
the flow structure and evolution of turbulent plane
jets in both stagnant and moving stream. The mea-
suring results showed that the large scale structures
did not exist in the jet in quiescent co-flow, which
can be found obviously in the jet in moving streams
and described by “local flapping”. The early work of
Sato'! and Rockwell et al.'” showed that the vari-

direct numerical simuation (DNS), plane turbulent jets. vortex structures, solid particles Stokes number.

cose mode, i.e. the flow structures predominately be-
ing symmetrical is most commonly observed in the
nearfield of planar jets. The asymmeltric or sinuous
mode in the jet was the characteristic of curved mean
velocity profile. So, if we arrange the exit velocity in
curved profile, the asymmetric mode can be observed
dow nstream near the jet nozzle. Generally, the tran-
sition from the symmetric frame near the jet nozzle to
the asymmetric configuration in the fully developed
region was found to take place after the mixing of the
two shear layers, but before the start location of simi-
1arity[ 3. in which the mean velocity profile transfers
from a flat profile to a curved one.

Compared with experimental studies, numerical
studies of planar jets are much fewer. The earliest
numerical work was conducted by Oler et al.'®.
They performed preliminary jet simulations by treat-
ing the fully developed region of the jet as a spatially
evolving vortex street composed of overlapping Rank-
ine vortices. Dai et al.!” first performed large eddy
simulation of a spatially evolving subsonic planar jet.
They got satisfied mean profiles which compared well
with experimental results, but the fluctuation intensi-
ties were 40% higher. Reichert et al.'¥ studied how
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the compressibility influences the spatially evolving
flow structures in a 2-dimensional inviscid jet with
strong coflow stream. They found that the jet
growth rate and entrainment decrease as the convec-
When M.= 0. 4,

the entrainment completely disappears in the self-sim-

tive Mach number, M. grows.

Though quite a few numerical studies
10] FRINE

ilar region.

9
have been focused on rectangular[ and roun
jets there is considerably less relevant research on

planar jets.

There have been few two-phase flow simulations
with advanced numerical methods (DNS/LES). In
all the simulation work of particle dispersion with
one-way coupling in the free shear layers, discrete
vortex simulations have played an important role,
which works well in the simulations of temporal and

13141 spatial

[ 16]

spatially evolving plane mixing layers

. .. (18]
axisymmetric jets

and spatial plane wakes
However, all these simulations require two-dimen-
sional and inviscid hypotheses. Generally, the exis-
tence of particles will influence the large scale turbu-
lent structures. For example, in the two-dimensional
simulations of free shear layers, Tang et al.'"” found
that particles dow the pairing mechanisms. Fan et
al.'"™ used DNS to study the dispersion characteristic
of various particles in a temporal mixing layer. Jin v
performed large eddy simulations of gas-solid two
phase jets and studied the particle dispersion rules in
the jet field with both one-way and two-way coupling
methods. His results indicated that the existence of
particles will generally retard the development of tur-
bulent coherent structures, while promoting the evo-
lution instead if the mass loading rate is a little high-
er. But so far, the authors have found considerably
fewer two-phase jet simulations with DNS, especially
in China. This paper presents direct numerical simu-
lations, which is based on finite difference methods,
of one-way coupling particle-laden weak-shearing
Jets.

1 Governing equations
1.1 Equations of the flow field

This paper studies the compressible ideal gas.
We assume that the fluid properties are constant in
time and space, and that the influence of the gravity
is omitted. The governing equations include the con-
tinuous equation, N-S equations and the energy equa-

tion, which is expressed in pressure p, as shown re-
spectively in the follow ing:
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in which the viscous dissipation
Ui
The state equation of the ideal gas,
p=FPRT (6)

is also needed, through which the pressure p and
temperature T are related. All the above equations
have been normalized.

1.2 The equation of the particle motion

This paper focuses on the dispersion characteris-
tic of the solid particles in the jet field. The following
assumptions have been made:

(i) The particle system is treated as a dilute
phase, i.e. we have not considered the mutual colli-
sions betw een particles.

(i) All the particles entering the computational
domain are in regular spherical shapes, and their di-
ameters, dp, and densities, 0ps are constant.

(iii) The density of particles is much bigger than
that of the gas.

(iv) We consider only the drag force of the flow
field and the gravitational force of particles themselves
on particles when they stay in the computational do-
main.

Then, the normalized vector motion equation of
particles is written as

dVv_ f .,
LU nte 7)

where f is the modified factor of the drag force coeffi-

1) 4in, HiH. Large eddy smulation of coherent stmciure in ges partick two phase turbulepce. Ph, D. Dissertation, Zhejang University, : 2002.
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cient, f= 1+ 0. 15Re(;'687 v Rep is the particle

Reynolds number, Re,=| U— V| d,/v. St is the
0.5/ (1814

I+/ ur )
velocity vectors of the gas and particle phase, respec-

Stokes number, St= U and V are the

tively. g is the gravitational acceleration vector.

Integrating (7), we get the velocity and position

vectors of every particle,
p! :U+%g [V“— U—%g]
cexp(— fAt/St), 8)

=+ UAtJr%gAtJr%[ VU

[ 1—exp— fAt/ S, <)
where n, n+1 represent the present and next time
step, respectively.

2 Numerical methods

Compact finite difference schemes have been
used in space discretization. The 1st-derivative and
2nd-derivative terms are discretized by 4th-order cen-
tral difference schemes, both of which are tri-diagonal

U9 The cross deriva-

and have 3-4-3 precision frames
tive terms & V/ 9x @ are evaluated by consecutively
solving the Ist-derivative twice. Because the com pact
scheme will produce the maximal errors at the highest
wave number supported by the computational grids,
filtering the numerical results is necessary, which is

done by a 4th-order compact filter herein.

We utilize different integration schemes to treat
Euler terms and non-Euler terms, the former of
which is marched in time by low-storage 4th-order
explicit Runge-Kutta schemes ™, while the latter of
which by Ist-order explicit Euler scheme, which can
save computational time considerably. We can dispose
in this way because the coefficients of every non-Euler
term, including the viscous and conduction one, con-
tain an item of 1/ Re, which causes the magnitude of
the whole term to be very small due to the large jet
Reynolds number (Re 7000 herein) compared with
that of Euler terms. This technique has been effec-

. . . . . 2)
tively used in predecessors’ numerical simulations

One of the most difficult factors in DNS of free
jets lies in the setting of boundary conditions. Gener-

ally, the jet flow develops in an infinite or very large
domain, but we must truncate the open space into a
finite domain to carry out the computations, which
brings out the problems, i.e. we do not know the
field information outside the computational domain
which crosses the boundary into the computational
domain. Non-reflecting boundary conditions (N R-
BCs)!*" * have been employed in this paper to mini-
mize this effect, which also minimize the numerical
reflected waves back into the com putational domain at
the boundary which do not exist physically. It can be
described simply as follows: at the individual point at
the boundary, if the direction of the normal velocity
is outgoing, compute the normal derivatives of all
flow variables as usual, whereas set the derivative
values to zero. At the outflow boundary, because all
the large scale structures propagate almost in the nor-
mal direction of the boundary, Thompson’ s NRBCs
based on one-dimensional system are capable of letting
the vortexes pass through the boundary fluently.
However, the perfectly NRBCs may lead to patholog-
ical numerical solutions, so the pressure correction
terms proposed by Rudy et al.'”V are adopted at the
outflow boundary simultaneously.

At the inflow boundary, we set the density and
mean velocity profiles in advance, so NRBCs are not
fit any more apparently. The characteristic inflow
boundary conditions (CIBCs)!* are used to evaluate
the time variation of pressure p. In orderto speculate
the time variation of the amplitudes of characteristic
waves CIBCs tranform the multi-dimensional vis-
cous problem to a one-dimensional inviscid one,
which was called the local one-dimensional inviscid

(LODD) relations by Poinsot et al.!*¥

At the two farfield boundaries,
found that even a stochastic numerical error can easily

the authors

aggregate gradually in the interior domain and con-
taminate the flow field finally, so NRBCs may not be
good enough in this situation. We used perfectly
matched layer (PM L) buffer zone techniques[ 2200
which append another nonphysical region at the end
of the original computational domain and a damping
term in every governing equation to damp all the de-
pendant variables to the known mean states. Because
the damping coefficient o has been set to a very large

number (100) herein, we discarded N RBCs at the

1) Zheng Y. Q. Direct numerical simulation and experimental verification on the tuthulent coherent structures in gas-particle two-phase mixing

layer. Ph. D. Dissertation, Zhejang University, 2001.

2) Stanleys A. S. A computational study of spatialy evolving turbulent plane jets. Ph. D. Dissertation, University of California, San Diego,

1998.
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far-field boundaries (see footnote on this page for ref-
erence).

In the integrated N-S equations, viscous bound-
ary conditions are also required. The recommended
schemes of Poinsot et al.!*! have been utilized in this
paper, i.e. in x direction, for example, Oty / K=
g/ 9x =0 for an outflow boundary, at which the
normal velocity direction is coincident with the out-
ward normal direction of the boundary, and Otx/
=0 for an inflow boundary.

At the inflow boundary, the longitudinal velocity
profiles of either shear layer of the jet, which are
symmetrical with the jet centerline, are set to the fa-
miliar hyperbolic tangent curves,
Ui+ U, U — U

2 . 2

and all the lateral velocities ( V') are set to zero. We

— . Y

arrange the same velocity profiles in the whole com-

putational domain as those at the inflow initially .

As we track particles in the jet flow field, the
density and velocity values should be used after inter-
polated, for it is not general for particles to just stay
on the grid points at any time. The bilinear interpola-
tion scheme has been used in this paper. It should be
pointed out that the one-way coupling method has
been utilized herein to track particles so the precision
order of numerical results of the particle phase has no
influence on that of the gas phase. In addition, the
preliminary statistical results of the particle phase
have been precise enough, so it is appropriate to use
first-order bilinear interpolation to satisfy the preci-
sion requirement. It should be necessary to utilize
higher-order Lagrangian or Hermite interpolation
schemes in two-way coupling methods.

3 Results and discussions

We take the air in ordinary conditions as the
simulation gas 1i.e. the environmental pressure and
temperature are 101. 325 kPa and 207, respectively.
The velocity ratio 1=AU/(U1— U2) 0. 33. The
jet Reynolds number Re, = PAUA/ 1 227056. The
ratio of initial momentum thickness to jet slot width
0/ h=0.025, so in terms of shear layer parameters.
the Reynolds number based on momentum thickness
Rev= PAUO/ 1+ >2176. The convective M ach number
M =AU/ (et ¢2) 0. 125.

The computational domain size is set to Ly=
15h and Ly =5.9h. In y direction, physical section
lasts 5/, while the residual 0.9 % is assigned average-
ly at both ends of physical domain as PML buffer
zones. We choose a computing grid system 375X (11
+229+11), where 11 is the grid point numbers in
buffer zones. The grid is uniform in x direction, Ax
~0.044, while in y direction, we arrange uniform
grids in the physical domain, Ay 0. 022h, and
stretched grids in buffer zones, where the stretching

ratio is 10 %4.

Fig. 1is the vorticity contour plots in the weak-
shearing jet, where f. is the convective flow time,
te=Lx/ Ues Ugis the average velocity at the jet slot,

U~=(U;+ U>)/2. It can be found that due to the

existence of strong co-flow stream, no obvious inter-
action between the two free shear layers near the slot
has occurred so that the development of vortex struc-
tures is similar to what appeared in the spatially e-
volving mixing layers. Two von Karman-like vortex
streets with opposite sign appear. In (a), in the sec-
tion x/ h=2.5 ~3, the waveswhose frequencies cor-
respond to the natural frequencies are enlarged to the
saturated state, so the spanwise vortexes roll up and
march downstream with the convective velocity U..
With the increase of Reynolds number, this kind of
periodic flow structure will lose its stability again
which leads to vortex pairing and mixing. t=3¢.is a
special instantaneous while, when no vortex pairing
appears and all the single spanwise vortexes arrange
regularly in the computational domain. The number
of vortexes attains a maximal value —10 in both the
upper and lower vortex streets. If the forces with the
fundamental and first subharmonic frequencies are
imported at the inflow boundary, (b) may be com-
pelled to a stable vortex structure frame, i.e. the
pairing of spanwise vortexes is inhibited, which is in-
teresting and profound in the research of vortex con-
trol. When #=3.5¢. the flow has developed to a
mean stable state. The downstream position of the
rolling-up of spanwise vortexes is generally fixed,
about at x/h=12.5 ~ 3. In the computational do-
main, the number of times of vortex pairing is gener-
ally bigger than 2. We have also captured the phe-
nomenon of 3 vortex mixing. For example, in (c),
the vortex structure near the outflow boundary comes
into being after 3 vortex mixing. The flow structures
at both sides of the jet centerline almost keep sym-

1) Xia, J. Direct numerical simuhtion of gas-solid two-phase plane turbulent jets. Ph. D, Dissertation, Zhejiang University, 2002.
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metrical at all time.
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Fig. 1. The vorticity fields in the w eak-shearing jet. (a) 1= 2¢
(b t=3t; (o) t=4t; (D =51,

Fig. 2 (a) is the vorticity contour plot of one
and (b) is the

topology structure of one vortex by theoretical analy-

spanwise rolled-up vortex kernel,

sis. It can be found that their description about a

single vortex is completely coherent. In our results,

during the rolling-up process, the marching velocity
of the flow structures U,= 1. 5=
convective velocity. The whole process is finished in
the section of x/h=2.5~7.1. After full rolling-up,
the vortex kernel possesses an elliptical shape whose
size is 0.64X0.5h. The vortex core always holds at
y/h= 0.5, where the strongest shearing effects e-

Ue equal to the

merge.

Hr— 4 'l 1
62 64 66 68 70
v/ h

(a) (b}

Fig. 2.
topology structure from Tong et al.

One spanwise vortex. (a) Computational results; (b)
[27]

Fig. 3 shows the representative vorticity contour
plot during the pairing process and the predecessor’ s
relevant results, which are fairly similar at qualitative
level. Similar to the situation when vortexes roll up,
the marching velocity of pairing vortexes is approxi-
In the
whole period of pairing, the biggest lateral size of
vortex kernels extends about 14 ~1.1hA, which is
two times the lateral width (0.54) of a single span-
wise vortex after the rolling-up finishes. So, from the

mately equal to the convective velocity U..

end of the rolling-up of spanwise vortexes to the end
of the pairing of two vortexes, both the size scale of
vortexes and shear-layer thickness double.

1.0F

0.8}

94 96 98 100 102 104 106
x/th
(a)

Fig. 3.

The computational results have captured the
complete process of 3-vortex mixing, as shown in
Fig. 4. If just judging from the phenomenon, the 3-
vortex mixing can be linearly divided into two consec-

utive 2-vortex pairing. During the process of 3-vortex

108 110 11.2

(b}

Two pairing vortexes (a) Computational results; (b) others results from Tong et al.l”

mixing, the marching velocity of large scale struc-
tures is about 1. 56, a little bigger than the convective
velocity U.. The biggest lateral extending range of
the vortexes (1.3 %) is a bit smaller than 3 times of
the width in y direction of a single vortex kernel. It
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should be pointed out that the simulation object in
this paper is a free jet flow developing in symmetrical
modes, so on the other side of the jet centerline,
there exist the vortex structures with the same figures
and opposite signs so that the vorticities on either side

14
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x/h
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Fig. 4.

Fig. 5 is the mean longitudinal velocity (U)
profile in the weak-shearing plane jet, where @ is
the local jet half width. The experimental results
measured under similar conditions "
We can see that U does not get to the self-similar
state until x/ h=11.5. Fig. 5 shows the U profiles
at 5 stations, i.e. x/h=11.5 12, 13, 14, 14.5,

which almost overlap in one parabolic line. Further-

are also given.

more, the computational results coincide with the ex-
perimental ones, which proves even if the DNS re-
sults are got in 2-dimensional cases, they can repro-
duce precisely enough the mean velocity profiles of
“real” flows and that the streamwise flow structures
have few effects on the U profile.

» PRI
08 Vi N
A A
5 4 .
:I; 04 / \.
2 Y, *
0.2
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0 el
-25~20-15-10-05 0 05 10 15 20 25§
/8,
x/ih=115, ————-- x/h=120,
------- /=130, v x{h=14.0,
————— k=145
B # Bradburyctal”'
Fig. 5. The mean bngitudinal velocity profiks in the plane jt.

Fig. 6 gives the longitudinal and lateral fluctua-
tion, yelocity, profiles, , which exhibit typical fluctua-

of the centerline must squash each other and cannot
develop without limit. In this sense, we can make
the conclusion that as 3 vortexes mix, the biggest lat-
eral size scale is 3 times that of one rolling-up vortex.

{10
0
8

v h

»

104 108

80 84 88 92 9.6 100
x/h

vih

116 12¢ 124 128 132 136 140 144
xlh

Three vortexes mixing.

tion characteristic of jets developing in symmetrical
modes. This kind of symmetry has remarkably influ-
enced the development of fluctuation fields. The lat-

. . 2
eral Reynolds stresses at the jet centerline [ve are
inhibited. At the same time, the longitudinal center-

, = .
line stresses [ uc tend to grow continuously, and as

. 2
a result at the downstream station x/ h=10, [uc

have grown to a value almost equal to the peak stress-
es at the center of shear layers. Obviously, this is a
special instance in the 2-dimensional jets which pos-
sess symmetrical vortex streets. The fluctuation pa-
rameters have not got to the self-similar state yet in
the computational domain (x/h=0 ~15). The ex-
perimental resultd *¥ showed that in the jet flow sys-
tem with low speed coflow stream, the self-similar
profile will not appear until the downstream stream-
wise displacement has got across 304 . In this paper
the existence of strong coflow (U *U,=2°1) fur-
ther delays the process of Reynolds stresses develop-
ing to the self-similar states.

Various particles in 4 prototypical sizes, i.e. St
=0.01, 1, 10, 100, have been studied in this pa-
per. We hope our computational results can provide
helpful references for engineering practice; such as
optimizing the particle size to improve the combustion
efficiency in burner systems.

Particles enter the computational domain after
one convective flow cycle in all cases. The entrance
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The fluctuation velocity profiles in the plane jet. (a) Lon-

Fig. 6.

gitudinal components (b) lateral components

numbers at the jet nozzle of all the above particles are
set to 151, 151, 151 and 57, respectively. We use
the data structure of “List” to record the particle in-
formation to save the memory consumption.

Fig. 7 is the instantaneous dispersion fields of
various particles at t=4t¢.. The corresponding vortic-
ity field is Fig. 1(c¢). The particle numbers in the
computational domain in Fig. 7 are 41925, 39950,
38171 and 14294, respectively. We can see that as
St <, the particle distribution is fully controlled by
the jet shear layers. During the rolling-up of spanw ise
vortexes, these particles gradually move helically
from the outside of the kernel into the core as the vor-
tex forms. Particles in similar sizes can be treated as
“tracking” ones, i.e. reproducing the complete pro-
cess of the development of vortex structures in jet
shear layers. In the following vortex-pairing stage,
particles arranging orderly in the two vortexes mix
with each other and the arrangement develops to-
wards non-orderly manner. We get very interesting
results similar to those of predecessors as St ~0(1).
In this case, the dynamic response time of particles,
Trs and the characteristic time of the fluid flow, tr,
are in the same magnitude, which causes almost all
the particles to aggregate outside the single spanwise
vortex kernel and at the border of two vortexes in the

pairing process, i. e. the particle dispersion field is
most non-uniform. With the augment of particle
sizes their inertia gradually strengthens and these
particles cannot be easily involved by the large scale
structures. As St=10, particles sweep little in the
domain where vortexes exist, but cannot propagate
through the whole vortex any longer. As St= 100,
almost all the particles stay in the band section w hose
width is equal to 4. At the center sections of two jet
shear layers in the computational domain (y =
40.5%), the particle concentration is higher. It
should be pointed out that for all these various parti-
cles of 4 classes, the maximal particle numbers in one
compulational grid, nimax=11(St=0.01), 36(1),
11(10) and 3(100), respectively, have been got in
the shear layer sections. We can also see hereinabove
that as St ~0 (1), the particle distribution is most
non-uniform, 1i. e.

LOCAL domains.

most particles assembling in
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Fig. 7. Instantaneous particle dispersion fields at t=4¢..

In order to describe the characteristic of the par-
ticle concentration field and the detailed extent of the
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particle dispersion, we introduce the grid RMS parti-
cle numbers, Nms, which is defined as

- 172
Nnrns:[En?/HJ ’ (11)
i—1

where nt is the total grids in the computational do-
main, i.e. the number of collocation grid points, 7
=374X228=85272; n; is the particle number in the
ith grid at some instantaneous while. When t= 0,
Nms=0 if we follow the above definition.

Table 1is the Nyms values of particles at various
Stokes numbers at 4 instantaneous whiles. We can
see that Nms(St=1) is always the biggest at differ-
ent time, which proves particles in similar sizes pos-
sess the most non-uniform concentration field and the
biggest dispersion scope in the flow field. The large
scale structures influence the particle dispersion most
strongly as the magnitude of the dynamic response
time of particles is similar to that of the characteristic
time of the fluid flow. On the other hand, N s val-
ues are relatively small with regard to particles at oth-
er Stokes numbers, i.e. the dispersion fields are more
uniform. If comparing Nms(St=0.01) with N
(St=10), we can find that their difference is very
small (about 0.01 ~0.02 in the magnitude). Addi-
tionally, their nimax values are completely the same
(11). All of these indicate that there exist similarities
between particles of St=0. 01 and those of 10 in
some statistical results, like Nms, and microcosmic
characters, like nimae even if their dispersion behav-
iors seem entirely different in the weak-shearing jet
flow field. Further studies will be needed in relevant

subjects.
Table 1. N, values of particles of 4 representative classes
St

0.01 1 10 100
3.5¢, 1.3721 1.5992 1.3923 0.5528
4z, 1.3848 1. 7211 1. 3904 0. 5543
4.5¢, 1. 4100 1. 6716 1. 3912 0. 5544
5¢, 1. 3820 1. 5988 1. 3960 0. 5543

The velocity field Vr of particles relative to the
gas phase can show directly the moving tendency of
particles in the flow field at any time, so itis a good
quantitative means to study the dispersion characteris-
tic of particles. Fig. 8 is the relative velocity vector
fields Vi of all the studied particles at one typical
while during the pairing of two vortexes. The corre-
sponding vorticity contour field is Fig. 3(a). Because
the inertia of small particles (St=0.01) is weak, we
can, see that almost all their relative velocities are ze-

ro. These particles can follow the vorticity contour
lines from the outside into the interior of the vortex
and reflect the coherent structures equivalently at that
time. Consequently, very small particles are usually
used as “ tracking” ones in ex periments to reproduce
the instantaneous flow structures. As St=1, almost
all the particles disperse outside the vortex kernel and
the directions of V. are all leaving the vortexes
which indicates that they are willing to spread out
further. A few of them arrange orderly almost in a
line in the vortexes. They are controlled by the “fold-
ing” effects at the border of two vortexes in pairing.
It can be found that the line formed by the particles
lags behind the real vortex border, for the movement
of vortexes directs that of particles. The cross angle is
about 90" in this paper. Furthermore, at both sides of
the line, the magnitudes of relative velocities of parti-
cles are almost the same, but their directions are op-
posites which shows that the rotating directions of
the two vortexes in pairing are fully contrary. As to
the large particles of St=10 and 100, they are capa-
ble of sustaining their own moving tendency. Because
of the large inertia, they are less influenced by the
large scale structures.

To sum up from the above discussions, we think
that the small particle in “tracking” magnitudes is the
optimal choice to improve the combustion efficiency.
If we treat the jet flow in this paper as a bumer sys-
tem in engineering applications, i. e. the jet nozzle is
the primary air exit and the region where the co-flow
stream occupies is the overfire air port—the most
popular arrangement of annular burners, the contact
surface area between particles of St=0.01 and air is
the biggest in all cases judging from Figs. 7, 8 and
Table 1, so they mix most intensively and the abun-
dant combustion will take place most probably.

4 Conclusions

The greatest difficulties in DNS of external, spa-
tially evolving flows, such as the free jet in this pa-
pers lie in the setting of boundary conditions. The
detailed flow structures explored by the computational
results prove the validity of BCs adopted in this pa-

per.

Two fully symmetrical vortex streets develop at
the downstream section of the jet nozzle in the com-
putational domain, in which the rolling-up of one
spanwise vortex, the pairing of 2 vortexes and the
mixing of 3, vortexes take place. During both the
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rolling-up and pairing processes, the marching veloci-
ties of the flow structures correspond to the convec-
tive velocity U.. The spanwise vortex generally rolls
up at x/ h=2.5~3. The biggest lateral widths of 2-
pairing and 3-mixing vortexes extend 2 and 3 times
that of one spanwise vortex, respectively.

The longitudinal velocity (U) gets to the self-
similar state at x/h=11. 5, and the mean profiles
(U) compare well with experimental results, which
validates that even 2-dimensional DNS results can
represent the lst-order statistical quantities of “real”

flows. Due to the special symmetrical vorticity field,

the centerline longitudinal intensities | uc grow
monotonously until equaling the peak stresses at the

shear layer locations, while the lateral intensities

lvé are inhibited strongly.

The dispersion characteristics of various repre-
sentative particles, St=20.01, 1, 10 and 100, have
been studied in this paper to provide helpful refer-
ences for engineering applications. Particles whose St
=0. 01 can be treated as “ tracking”
fully controlled by the vortexes and reproduce all the
large scale structures at the downstream. section. As

ones. They are
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the dynamic response time of particles is identical
with the characteristic time of the fluid flow (St=
1), particles exhibit interesting self-organized behav-
iors, i.e. most of them spreading outside the vortex
kernels while a few arranging orderly in “ line”
modes in the pairing vortexes. Large particles of St
=10 and 100 are less influenced by the large scale

structures.

The grid RMS particle numbers Nimss and rela-
tive velocity fields to the gas phases Vi have been
used as quantity parameters to further prove the above
conclusions. N (St = 1) is always the biggest at
different time, which validates that particles in such
size disperse most non-uniformly and lots of them ag-
gregate in local domains. In V. plots, the relative ve-
locities of all the particles of S¢=0.01 are almost ze-
ro, which indicate that there almost does not exist
slippage between particles and air. For particles of
St=1 located around the vortex kermels, the instan-
taneous moving directions of V. point to outside of
the kemels, indicating that they will spread out fur-
ther. At both sides of the above “line”

es, the magnitudes of V. of particles are almost the

in the vortex-

same, but their  directions are, opposite, and this
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“line” lags behind the actual border of the two vor-

texes in pairing.

It seems that the particle size at S¢ ~O (10 *)is

the most preponderant choice in gas-solid two-phase

combustion systems in engineering applications ac-

cording to the above conclusions.
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